Informace o publikaci

DeepAbstract: Neural Network Abstraction for Accelerating Verification

Autoři

ASHOK Pranav HASHEMI Vahid KŘETÍNSKÝ Jan MOHR Stefanie

Rok publikování 2020
Druh Článek ve sborníku
Konference Automated Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi https://doi.org/10.1007/978-3-030-59152-6_5
Popis While abstraction is a classic tool of verification to scale it up, it is not used very often for verifying neural networks. However, it can help with the still open task of scaling existing algorithms to state-of-the-art network architectures. We introduce an abstraction framework applicable to fully-connected feed-forward neural networks based on clustering of neurons that behave similarly on some inputs. For the particular case of ReLU, we additionally provide error bounds incurred by the abstraction. We show how the abstraction reduces the size of the network, while preserving its accuracy, and how verification results on the abstract network can be transferred back to the original network.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info