Informace o publikaci

Relative monadicity

Autoři

ARKOR Nathanael Amariah MCDERMOTT Dylan

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Algebra
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0021869324005167
Doi https://doi.org/10.1016/j.jalgebra.2024.08.040
Klíčová slova Relative monad; Relative adjunction; Monadicity; Virtual equipment; Formal category theory; Enriched category theory; Contents
Popis We establish a relative monadicity theorem for relative monads with dense roots in a virtual equipment, specialising to a relative monadicity theorem for enriched relative monads. In particular, for a dense V-functor j : A-* E, a Vfunctor r: D-* E is j-monadic if and only if r admits a left j-relative adjoint and creates j-absolute colimits. This provides a refinement of the classical monadicity theorem - characterising those categories whose objects are given by those of E equipped with algebraic structure - in which the arities of the algebraic operations are valued in A. In particular, when j = 1, we recover a formal monadicity theorem. Furthermore, we examine the interaction between the pasting law for relative adjunctions and relative monadicity. As a consequence, we derive necessary and sufficient conditions for the (j-relative) monadicity of the composite of a V-functor with a (j-relatively) monadic Vfunctor.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info