Zde se nacházíte:
Informace o publikaci
Comparison of Plasma Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: II Analysis of Deposition Process
| Autoři | |
|---|---|
| Rok publikování | 2025 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | https://www.mdpi.com/1422-0067/26/17/8641 |
| Doi | https://doi.org/10.3390/ijms26178641 |
| Klíčová slova | plasma polymer; 2-oxazoline; G4 ionization and bond dissociation energies; antibiofouling coatings |
| Popis | Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by many different fragments, preferably of no repeating unit. Thus, chemical analysis of plasma polymers is difficult. To obtain a better description of plasma polymerized poly(2-oxazoline) coatings, the analysis of their plasma deposition process was performed. The electron ionization of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline molecules was studied using the crossed electron-molecular beam technique with mass spectrometric detection of the produced ions. The chemical composition of gaseous compounds at plasma polymerization was determined by gas chromatography-mass spectrometry (GC-MS), ion mobility spectrometry (IMS) and optical emission spectroscopy (OES). Also, the chemical composition and antibacterial activity of the water leachates from previously deposited poly(2-oxazoline) films were tested using FTIR spectroscopy and the disk diffusion method, respectively. It was found that acetonitrile and propionitrile are the main neutral products created in the nitrogen discharge with 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline monomers. The water leachates from deposited films do not exhibit any antibacterial activity. It was concluded that the antibacterial properties of POx films are due to their hydrophility. |