Zde se nacházíte:
Informace o publikaci
A Goldberg-Sachs theorem in dimension three
| Autoři | |
|---|---|
| Rok publikování | 2015 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | Classical and Quantum Gravity |
| Fakulta / Pracoviště MU | |
| Citace | |
| Doi | https://doi.org/10.1088/0264-9381/32/11/115009 |
| Obor | Obecná matematika |
| Klíčová slova | three-dimensional pseudo-Riemannian geometry; Goldberg-Sachs theorem; congruences of geodesics; algebraically special spacetimes; topological massive gravity |
| Popis | We prove a Goldberg-Sachs theorem in dimension three. To be precise, given a three-dimensional Lorentzian manifold satisfying the topological massive gravity equations, we provide necessary and sufficient conditions on the trace-free Ricci tensor for the existence of a null line distribution whose orthogonal complement is integrable and totally geodetic. This includes, in particular, Kundt spacetimes that are solutions of the topological massive gravity equations. |
| Související projekty: |