Informace o publikaci

Fourier Analysis with Generalized Integration

Autoři

ARREDONDO Juan H. BERNAL Manuel MORALES MACIAS Maria Guadalupe

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.3390/math8071199
Doi http://dx.doi.org/10.3390/math8071199
Klíčová slova fourier transform; Henstock-Kurzweil integral; bounded variation function; L-p spaces
Popis We generalize the classic Fourier transform operator F-p by using the Henstock-Kurzweil integral theory. It is shown that the operator equals the HK-Fourier transform on a dense subspace of L-p, 1 < p <= 2. In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F-p(f) under more general conditions than in Lebesgue's theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue's theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info