Informace o publikaci

Image-based meta-and mega-analysis (IBMMA): A unified framework for large-scale, multi-site, neuroimaging data analysis

Autoři

NICK Steele HUGGINS Ashley A MOREY Rajendra A HUSSAIN Ahmed RUSSELL Courtney SUAREZ-JIMENEZ Benjamin POZZI Elena JAMEEI Hadis SCHMAAL Lianne VEER Ilya M WALLER Lea JAHANSHAD Neda THOMOPOULOS Sophia I SALMINEN Lauren E OLFF Miranda FRIJLING Jessie L VELTMAN Dick J KOCH Saskia B J NAWIJN Laura MIRJAM Van Zuiden WANG Li ZHU Ye LI Gen STEIN Dan J IPSER Jonathan NERIA Yuval ZHU Xi RAVID Orren ZILCHA-MANO Sigal LAZAROV Amit STEVENS Jennifer S RESSLER Kerry JOVANOVIC Tanja VAN ROOIJ Sanne J H FANI Negar MUELLER Sven C HUDSON Anna R DANIELS Judith K SIERK Anika MANTHEY Antje WALTER Henrik VAN DER WEE Nic J A VAN DER WERFF Steven J A VERMEIREN Robert R J M SCHMAHL Christian HERZOG Julia I REKTOR Ivan ŘÍHA Pavel KAUFMAN Milissa L LEBOIS Lauren A M BAKER Justin T ROSSO Isabelle M OLSON Elizabeth A KING Anthony LIBERZON Israel ANGSTADT Michael DAVENPORT Nicholas D DISNER Seth G SPONHEIM Scott R STRAUBE Thomas HOFMANN David LU Guangming QI Rongfeng WANG Xin KUNCH Austin XIE Hong QUIDE Yann EL-HAGE Wissam LISSEK Shmuel BERG Hannah BRUCE Steven E CISLER Josh ROSS Marisa HERRINGA Ryan J GRUPE Daniel W NITSCHKE Jack B DAVIDSON Richard J LARSON Christine DEROON-CASSINI Terri A TOMAS Carissa W FITZGERALD Jacklynn M ELMAN Jeremy PANIZZON Matthew FRANZ Carol E LYONS Michael J KREMEN William S FEOLA Brandee BLACKFORD Jennifer U OLATUNJI Bunmi O MAY Geoffrey NELSON Steven M GORDON Evan M ABDALLAH Chadi G LANIUS Ruth DENSMORE Maria THEBERGE Jean NEUFELD Richard W J THOMPSON Paul M SUN Delin

Rok publikování 2025
Druh Článek v odborném periodiku
Časopis / Zdroj Neuroimage
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S1053811925005579?pes=vor&utm_source=clarivate&getft_integrator=clarivate
Doi https://doi.org/10.1016/j.neuroimage.2025.121554
Klíčová slova Neuroimaging; Big data; Meta-analysis; PTSD; Resting-state fMRI
Popis The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta-& Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA successfully analyzed a large-n dataset of several thousand participants and revealed findings in brain regions that some traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.

Další info